عموميات حول المتتاليات[عدل]
ليكن
عنصرا من
، نضع :
، ولتكن
متتالية عددية.
متتالية مكبورة - متتالية مصغورة - متتالية محدودة[عدل]
رتابة متتالية[عدل]
متتالية حسابية[عدل]
متتالية هندسية[عدل]
متتالية نهايتها لا منتهية[عدل]
تعريف
- نقول إن نهاية متتالية عددية
هي
عندما يؤول
إلى
، إذا كان كل مجال مفتوح من
حيث
يحتوي على جميع حدود المتتالية
انطلاقا من رتبة معينة.
وبتعبير آخر :
ونكتب
أو
- ونقول إن نهاية متتالية
هي
إذا كانت نهاية المتتالية
هي 
وبتعبير آخر :
متتاليات اعتيادية نهايتها
[عدل]
متتالية نهايتها منتهية[عدل]
تعريف
- كل متتالية نهايتها عدد حقيقي تسمى متتالية متقاربة.
- كل متتالية غير متقاربة تسمى متتالية متباعدة.
تكون متتالية متباعدة إذا كانت نهايتها
أو
أو إذا كانت لا تقبل نهاية (طبعا عندما يؤول
إلى
)
متتاليات اعتيادية نهايتها الصفر[عدل]
وحدانية النهاية[عدل]
خاصية
إذا كانت متتالية متقاربة فإن نهايتها وحيدة.
خاصية
إذا كانت متتالية متقاربة فإنها تكون محدودة.
ملاحظة : عكس هذه الخاصية غير صحيح، فالمتتالية
المعرفة بما يلي :
محدودة لكنها غير متقاربة.
العمليات على نهايات المتتاليات[عدل]
بصفة عامة، العمليات على النهايات التي سبقت دراستها بالنسبة للدوال، تبقى صالحة بالنسبة لنهايات المتتاليات.
نعتبر
و
عددان حقيقيان.
نهاية مجموع متتاليتين[عدل]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
شكل غير محدد
|
نهاية جداء متتاليتين[عدل]
|
|
|
|
|
|
|
أو
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
شكل غير محدد
|
نهاية خارج متتاليتين[عدل]
|
|
|
|
|
|
|
|
|
|
|
|
أو
|
|
|
و ✪
|
و ✪
|
أو
|
|
|
|
أو
|
|
|
|
|
|
|
|
شكل غير محدد
|
|
|
|
|
شكل غير محدد
|
✪ : انطلاقا من رتبة معينة
النهايات والترتيب[عدل]
مصاديق التقارب[عدل]
الرتابة والتقارب[عدل]
خاصية
- كل متتالية تزايدية ومكبورة هي متتالية متقاربة.
- كل متتالية تناقصية ومصغورة هي متتالية متقاربة.
ملاحظة : هذه الخاصية تبين فقط أن المتتالية متقاربة دون تحديد نهايتها.
خاصية
- كل متتالية تزايدية وغير مكبورة نهايتها

- كل متتالية تناقصية وغير مصغورة نهايتها

نهاية المتتالية
حيث
[عدل]
أمثلة :
نهاية المتتالية الهندسية
حيث
[عدل]
نهاية متتالية من نوع
[عدل]
نهاية متتالية من نوع
[عدل]
متتاليتان متحاديتان[عدل]
مثال :
لتكن
و
المتتاليتين المعرفتين بما يلي :
و
لدينا
تزايدية و
تناقصية و
إذن المتتاليتان
و
متحاديتان.
خاصية
إذا كانت
و
متتاليتين متحاديتين فإنهما متقاربتان ولهما نفس النهاية.
انظر أيضا[عدل]